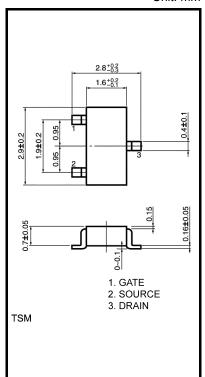
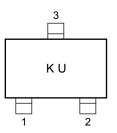
Product specification

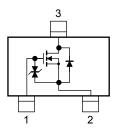

SSM3K02T

Unit: mm

- Small package
- Low on resistance: $R_{on} = 200 \text{ m}\Omega \text{ (max)} (V_{GS} = 4 \text{ V})$
 - $R_{on} = 250 \text{ m}\Omega \text{ (max)} (V_{GS} = 2.5 \text{ V})$
- Low gate threshold voltage: V_{th} = 0.6~1.1 V (V_{DS} = 3 V, I_D = 0.1 mA)

Absolute Maximum Ratings (Ta = 25°C)


Characteristi	cs	Symbol	Rating	Unit	
Drain-source voltage		V _{DS}	30	V	
Gate-source voltage		V _{GSS}	±10	V	
Drain current	DC	I _D	2.5	A	
	Pulse	I _{DP}	5.0		
Drain power dissipation (Ta = 25°C)		P _D (Note 1)	1250	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	


Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the TY Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

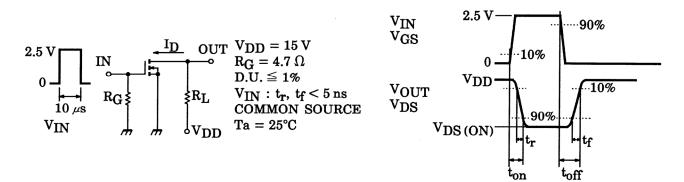
- Note 1: Mounted on FR4 board (25.4 mm \times 25.4 mm \times 1.6 t, Cu pad: 645 mm², t = 10 s)
- Note 2: The pulse width limited by max channel temperature.

Marking

Equivalent Circuit

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.


SSM3K02T

Electrical Characteristics (Ta = 25°C)

Chara	acteristics	Symbol	Test Condition		Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS}=\pm 10~V,~V_{DS}=0$		_	_	±5	μA
Drain-source brea	akdown voltage	V (BR) DSS	I _D = 1 mA, V _{GS} = 0		30			V
Drain cut-off curre	ent	I _{DSS}	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0$		_		1	μA
Gate threshold vo	ltage	V _{th}	$V_{DS} = 3 V, I_D = 0.1 mA$		0.6		1.1	V
Forward transfer	admittance	Y _{fs}	$V_{DS} = 3 V, I_D = 1.25 A$	(Note)	2.2		_	S
Drain-source ON resistance		R _{DS (ON)}	I _D = 1.25 A, V _{GS} = 4 V	(Note)	_	140	200	mΩ
			I _D = 1.25 A, V _{GS} = 2.5 V	(Note)	_	180	250	
Input capacitance	9	C _{iss}	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		_	115		pF
Reverse transfer	capacitance	C _{rss}	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		_	24		pF
Output capacitand	ce	C _{oss}	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$		_	60	_	pF
Switching time	Turn-on time	t _{on}	$\begin{array}{l} V_{DD} = 15 \; V, \; I_{D} = 0.5 \; A, \\ V_{GS} = 0 2.5 \; V, \; R_{G} = 4.7 \; \Omega \end{array}$		—	52	—	
	Turn-off time	t _{off}			_	80	_	ns

Note: Pulse test

Switching Time Test Circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = 100 μA for this product. For normal switching operation, V_{GS} (ON) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(Relationship can be established as follows: $V_{GS} \ (off) < V_{th} < V_{GS} \ (ON))$

Please take this into consideration for using the device.